Limits

Questions

Question 1. As a warm-up, compute the following partial derivatives.
(a) Compute f_{x} and f_{y} for $f(x, y)=x^{4}+5 x y^{3}$.
(b) Compute $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}$ if $w=\frac{e^{v}}{u+v^{2}}$.
(c) Compute $R_{t}(0,1)$ for $R(s, t)=t e^{s / t}$.

Question 2. Draw a contour map of $f(x, y)=x^{2}-y^{2}$ showing several level sets $f(x, y)=k$. Include the level set for $k=0$, and at least one level set with $k>0$ and one with $k<0$.

Then compute $f_{x}, f_{y}, f_{x x}, f_{y y}$ at $(x, y)=(1,1)$, and think about what your answers mean geometrically, using your contour map as guidance.

Question 3. If $f(x, y)=\frac{7}{8}\left(y^{2}+y+x\right)^{4}$, compute $f_{x y x y x}(2,0)$. Hint: it may be easier to do the derivatives with respect to x first (why are you allowed to do that?).

Question 4. Does there exist a function $f(x, y)$ with the specified partial derivatives? If so, find one. If not, explain why not.
(a) $f_{x}(x, y)=2 x+y, f_{y}(x, y)=4 y+x$
(b) $f_{x}(x, y)=e^{x}+\cos y, f_{y}(x, y)=x \cos y+e^{y}$
(c) $f_{x}(x, y)=e^{x^{2}-y^{2}}, f_{y}(x, y)=\sin \left(x^{2}\right) \cos \left(y^{2}\right)$

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1.

(a) $f_{x}(x, y)=4 x^{3}+5 y^{3}$ and $f_{y}(x, y)=15 x y^{2}$.
(b) The partial derivatives are

$$
\frac{\partial w}{\partial u}=\frac{e^{v}}{\left(u+v^{2}\right)^{2}}
$$

and

$$
\frac{\partial w}{\partial v}=\frac{e^{v}\left(u+v^{2}\right)+2 v e^{v}}{\left(u+v^{2}\right)^{2}}
$$

(c) $R_{t}(s, t)=e^{s / t}-t e^{s / t} \frac{s}{t^{2}}$ and then $R_{t}(0,1)=1$.

Question 2. I drew a picture in class.
Question 3. Clairaut's theorem tells us that $f_{x y x y x}(2,0)=f_{x x x y y}(2,0)$. Repeated differentiation gives $f_{x x x y y}(2,0)=42$.

Question 4.

(a) Integrating the first equation gives

$$
f(x, y)=x^{2}+x y+C(y)
$$

where $C(y)$ is a function of y alone. Differentiating with respect to y gives

$$
f_{y}(x, y)=x+C^{\prime}(y)
$$

Since $f_{y}(x, y)=4 y+x$ we see that $C(y)=2 y^{2}+D$ for some constant D. So $f(x, y)=x^{2}+x y+2 y^{2}$ will suffice.
(b) If such an f existed, then we would have

$$
f_{x y}=\frac{\partial}{\partial y}\left(e^{x}+\cos y\right)=-\sin y \neq \cos y=\frac{\partial}{\partial x}\left(x \cos y+e^{y}\right)=f_{y x}
$$

which is a violation of Clairaut's theorem. So no such f exists.
(c) Again, no such f exists, by the same reasoning as in (b).

